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Abstract. We study Heisenberg spins on an infinite plane. In the continuum limit the
Hamiltonian of the system is given by the nonlinearσ model. Following an approach developed
by Mikeska and Affleck, we find that the angular momentum associated with the order parameter
presents a classical spin part, associated with the gauge freedom of a trihedra. We show that this
gauge field may induce a non-trivial topological term, the Hopf term (or Chern–Simons term),
as initially suggested by Dzyaloshinski, Polyakov and Wiegmann.

1. Introduction

We study the continuum limit of a system of Heisenberg spins on a square lattice in the
infinite plane. The Hamiltonian of the system is given by the nonlinearσ model. In one
dimension, it is now accepted that, in the Lagrangian, there is an additional topological
term, the Pontryagin index. This was initially suggested by Haldane [1]. It is constructed
from the topological current densityJ 1 = n · ∂xn× ∂yn.

In dimensionD = 2+1, there are two procedures to construct a topological term. First,
we can generalizeJ 1 to a three-dimensional current,J i = εijkn · ∂jn × ∂kn, from which
one can derive the following three-dimensional topological term∫

divJ dx dy dz. (1)

However,J is a closed two-form, therefore divJ vanishes identically, and the above
integral gives no contribution [2]. In differential geometry, this is the Bianchi equation [3].
Owing to this property, one can define a gauge fieldA such that rotA = J . It is this gauge
field which enables us to build yet another different topological term, the Hopf term [4]

HHopf =
∫
A · J dx dy dz. (2)

As initially suggested by Dzyaloshinskiet al [5], this is the proper term in dimension
D = 2+ 1 which should appear in the Lagrangian of the antiferromagnet in the continuum
limit. It indexes topologically the different mapping ofS3 to S2 (whereS3 results from the
compactification of 2+ 1).

Previous works [6–8], while inquiring into the possible extension in dimension 2+ 1
of the Haldane result, that is looking for an effective continuous action starting from the
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microscopic Heisenberg Hamiltonian, have focused on the first term (1), when computing
the local anaholonomy. In this paper, we follow the same approach as Mikeska [9] and
Affleck [10]. In addition to the order parameter and generator of rotation, we introduce two
auxiliary fields which can be interpreted as covariant derivatives of the order parameter and
which enable us to introduce a gauge field. In the Hamiltonian expansion, we shall keep
the contributions involving this gauge field, i.e. we shall keep possible non-local terms, and
show that they lead to a non-trivial topological term in the Lagrangian. Moreover, while
taking the continuum limit, we shall compute the Heisenberg interaction terms, in such a
way that we shall remove irrelevant contributions that could occur from the breaking of the
translational symmetry characteristic of the Affleck procedure [11].

2. Definition of a continuous field theory in the one-dimensional case

Consider a one-dimensional Heisenberg antiferromagnet chain of spins. In the case of a
nearest-neighbour interaction, the Hamiltonian is given by

HHeisenberg= J
∑
〈i,j〉

Si · Sj (3)

whereJ is the positive coupling constant. The local degree of freedom is represented by
an operatorS, satisfying the Poisson brackets

{Sai , Sbj } = iεabcScj δij . (4)

In the classical limit (largeS) and when looking for low-energy excitations, we can
suppose that the system has a staggered magnetization: the chain is locally almost Néel
ordered. Under this assumption,S2i + S2i+1 will be small (of the order ofa, the lattice
spacing). Following Mikeska and Affleck, we introduce an elementary cell, of size 2a

(it now includes two spins) and decompose the variableS into slow and fast varying
components. These two fields are defined in the following way

n(x) = 1

2s
(S2i − S2i+1)

l(x) = 1

2a
(S2i + S2i+1).

(5)

They correspond to the Fourier components ofS for the q = 0 andq = π modes.
These are the two modes which are relevant when studying the long-distance (low-energy)
behaviour [1]. These two components satisfy the following relation

n2 = 1− a
2

s2
l2 and n · l = 0. (6)

In the continuum limit (a → 0), n2 = 1, i.e.n lives on the sphereS2. The second
relation (which is exact inD = 1+ 1) tells us that the two fieldsl andn are orthogonal.
Thus, we find that there are 6− 2 = 4 degrees of freedom per elementary cells of length
2a, as expected from the initial microscopic Hamiltonian.

In the continuum limit lima→0
δx1,x2

2a = δ(x1 − x2); therefore, these two fields generate
simple Poisson Brackets:

{ni(x1), n
j (x2)} = i

4a2

s2
εijklkδ(x1− x2)→ 0

{li(x1), l
j (x2)} = iεijklkδ(x1− x2)

{li(x1), n
j (x2)} = iεijknkδ(x1− x2).

(7)
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Thus we conclude that the order parametern is a free field of tridimensional vectors, of
length one. Moreover, the SO(3) Lie algebra structure generated by the Poisson Brackets
for l indicates that this field is the generator of rotation forn.

The Liouville theorem allows us to establish another relation betweenl andn. We
apply it toS2i andS2i+1 successively, and, when expanding the order parametern in the
neighbourhood ofx, the centre of the elementary cell, we can write:

l = n×Π = n× ∂n

cg2∂t
− α

4π
∂xn(x). (8)

HereΠ is the momentum conjugate ton. We have also definedc = 2Jas, the velocity of
the magnons for a unidimensional antiferromagnet together withg2 = 2

s
andα = 2πs.

When expanding the Heisenberg Hamiltonian (3) as a function of the variablesl, n and
∂n
∂x

, we find the following expression:

HHeisenberg= ac
∑
〈i,j〉

g2

(
l2+ sl(x) · ∂xn(x)+ s

2

4
(∂xn(x))

2

)
+ 1

g2
(∂xn(x))

2. (9)

In the limit wherea goes to 0, 2a
∑
〈i,j〉 −→

∫
dx. Therefore, we can write

HHeisenberg= c

2

∫
g2
(
l+ α

4π
∂xn

)2
+ 1

g2
(∂xn)

2 dx (10)

whereα = 2πs. If we replacel with the expression (8), we find

HHeisenberg= 1

2

∫
1

cg2
(∂tn)

2+ c

g2
(∂xn)

2 dx. (11)

Thus, the long-distance behaviour of the infinite one-dimensional chain of Heisenberg
spins is given by the nonlinearσ model. A Legendre transformation, using the conjugate
momenta given by relation (8), leads, for this system, to the following Lagrangian

L = 1

2g2

∫ ∫
dx dt

[
1

c

(
∂n

∂t

)
− c(∂xn)2

]
+ c α

4π
n · ∂xn× ∂tn. (12)

This is the Lagrangian of the nonlinearσ model plus a total derivative corresponding
to a topological term:the Pontryagin index. As n2 = 1, we can express it as a function of
the coordinates of the sphere (θ , ϕ). The topological term then writes:

L1+1 = α

4π
sinθ(∂xθ∂tϕ − ∂tθ∂xϕ). (13)

It represents the Jacobian of the coordinates transformation(θ, ϕ) → (x, y). Because
α = 2πs, the Pontryagin index is relevant only for half-integer spin chains. Haldane was
the first to suggest that this kind of term could explain why integer and half-integer spin
chains have different behaviours. The renormalization group analysis, which predict for the
nonlinearσ model a gap in the excitation spectrum, is no longer relevant for the half-integer
spin chains. As in ’t Hooft’s approach [12], the gap closes forα = π , in agreement with
the Lieb–Schultz–Mattis theorem [13].

3. Conservation of the number of degrees of freedom in the two-dimensional case

During our procedure of shrinking the lattice spacing of the chain to zero, we have kept
constant the physical observablesc andg2, the velocity of the magnons and the coupling
constant. We are now going to consider spins on a two-dimensional square lattice, and shall
recover, using the Affleck procedure, the nonlinearσ model as the continuum limit of the
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Hamiltonian of the system. However, inD = 2+ 1, the conjugate momenta5θ and5ϕ

will have different expressions. Moreover, we shall see that a third conjugate momentum
is required in order to fully describe the microscopic configuration.

The summation is now on each couple (i, j ) of spins on next-neighbouring sites of a
square lattice, where each link is counted only once. For this bipartite lattice, we have
again, as in the one-dimensional chain, two square ferromagnetic sublattices, and we shall
consider that the ground state is again an alternate state. Once more, we shall decompose
the original order parameter into a slow varying mode,n, and a local magnetizationl,
associated with a rapidly varying mode, for aplaquetteof size 2a × 2a.

Note that now, in order to conserve the number of degrees of freedom, we must also
define, in addition ton and l, two auxiliary fieldsDx andDy . These four fields can be
expressed as functions of the original degrees of freedom as follows

n = a− b+ c− d
4s

a

s
= n+ a2 l

s
+ a(Dx +Dy)

l = a+ b+ c+ d
4a2

b

s
= a2 l

s
− n+ a(Dy −Dx)

Dx = a− b− c+ d
4as

c

s
= n+ a2 l

s
− a(Dx +Dy)

Dy = a+ b− c− d
4as

d

s
= a2 l

s
− n+ a(Dx −Dy).

They correspond to the Fourier modes of the spin operators, with momenta near(π, π),
(0, 0), (π, 0), (0, π), which correspond to the dominant contributions in the low excitations
regime. We have the following constraint

n2 = 1− a
4

s2
l2− a2D2

x − a2D2
y. (14)

In the continuum limit, the Poisson brackets forn vanish. Therefore in this limit, we
again find thatn is a free field and that the order parameter manifold is the sphereS2. Note
that in theD = 2+ 1 case,n · l 6= 0.

The Poisson brackets involvingl still induce a non-trivial algebra. Indeed, we can write:

{li(x1, y1), l
j (x2, y2)} = iεijklkδ(x1− x2)δ(y1− y2)

{li(x1, y1), t
j (x2, y2)} = iεijktkδ(x1− x2)δ(y1− y2)

wheret stands for any of the fieldsn, Dx orDy . Thus, we can conclude thatl is again the
generator of rotations in the space where not only the order parametern but also the two
auxiliary fieldsDi are defined. These last two fields satisfy the following Poisson bracket:

{Di
x(x1, y1),D

j
y (x2, , y2)} = i

s
εijknkδ(x1− x2)δ(y1− y2). (15)

In contrast to [7], in the present derivation, we take into account these auxiliary fields.
Thus we will recover the expected values for the physical observablec andg2 [14].

4. The auxiliary fields

If we consider thata−b2s is a first-order approximation forn, then we can consider that 2Dx

is almost the first derivative, along the direction of the axisex , of the order parametern.
However, the true definition of the derivative would require the use of the values of the
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Figure 1. Two-dimensional Heisenberg antiferromagnet and the Affleck order parameter.a, b,
c, andd are the four spins on theplaquette(x, y). 1 and2 belong to theplaquette(x+ 2a, y).
nj = c − d andnj+1 = a − b are the two pseudo-order parameters which we have used to
define the covariant derivativeDx .

field n defined on the neighbouringplaquettes. And, asn2 = 1, it would result in a field
orthogonal ton. However, here we haveDx · n ∼ l ·Dy 6= 0.

Dx is therefore a covariant derivative, which involves the gauge field associated with
the parallel transport from oneplaquetteto another.

The same argument can be applied to characterize the fieldDy : we can associate it
with the covariant derivative, along the direction of the axisey .

lim
a→0

2Dµ(x, y) = ∂µn+ 1

s
Γµ

where Γµ = Aµn are connections. They express the deviation between our local
pseudodefinition of the derivative and the true one which should be constructed along a
geodesic in the order parameter manifold.

They are such that the auxiliary fields satisfy the Poisson brackets (15). As this relation
can be interpreted as the Poisson brackets between covariant derivatives, it gives us the
field strength tensor, or curvature, which is determined byn(x, y). The natural continuous
gauge field in our problem is defined on sitei by [15]:

Aµ = ηiA(ni ) · ∂µni = ηiτ gµ(i) (16)

whereηi = ±1 for each of the sublattices.A is the monopole vector potential introduced
by Haldane, and it satisfies: rotn A = n. τg can be associated with the geodesic torsion
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of a space curve whose tangent is given byn [16]. We do not fix the gauge. In terms of
Euler angles, the torsion is given by the following expression:

τ gµ = A(n) · ∂µn = cos(θ)∂µϕ + ∂µψ. (17)

This gauge field expresses the parallel transport laws of the pseudo-order parameter
a−b
2s . Note that in contrast to theD = 1 + 1 case, the true order parameter is now a

full trihedra (n,u,v), where the gauge freedomψ refers to the rotation in the(u,v)
plane. This rotation enables us to connect locally the trihedras defined on two neighbouring
plaquettesand allows for non-trivial mapping fromS3 to S2. If the spin configuration in
the compactifiedD = 2+ 1 space is trivial, thenψ can be removed by a global gauge
transformation. However, this is no longer possible when the spin configuration involves
anomalies, that is when the Hopf term is non-vanishing [17].

In order to check these expressions for the auxiliary fields as a function ofn, we can
consider the connectionsDµ · n as the phase associated withDµ in the coherent state
representation. Indeed, this representation enables us to express the scalar product between
neighbouring spins [15]. For antiferromagnetically correlated configurations, we have

〈Ωi |Ωi+δµ〉 =
(

1−Ωi ·Ωi+δµ
2

)s
e−iAµ(xi )|δµ|. (18)

In order to computeDµ · n, we parallel transport each vector of theplaquettein the
same manner, for example, along a path fromxi to xf = xi + ex + ey with a right turn.
Here |eµ| = a

2. We takeη = +1 for the sublattice which containsa andc, that is when
we go from a spin up to a spin down, and−1 if we go from a spin down to a spin up. We
then find

〈n|a〉 = e−i a2 (τ
g
y (xi )−τgx (xi+ey )) 〈n|c〉 = e−i a2 (−τgy (xi )+τgx (xi−ey )). (19)

The two other terms give

−〈−n|b〉 = −ei a2 (τ
g
x (xi )+τgy (xi+ex )) − 〈−n|d〉 = −ei a2 (−τgx (xi )−τgy (xi−ex )). (20)

Thus, when using these relations, we find forDx · n the following expression:

4as〈Dx |n〉 = (a− b− c+ d) · n = i2aτgx (21)

in agreement with expression (16) for the connection. Note also that this parallel transport
gives no phase term forn · n:

n · (a+ c− b− d) = 4+O(a2). (22)

5. The angular momentum

Using the definition ofl, we can show that the sum on all theplaquettesof l is invariant. It
commutes with the Heisenberg Hamiltonian:{H, l} = 0. Note also that in dimension 2+1,
the second relation of (6) no longer holds:n andl are no longer orthogonal. Leth = n · l,
the residual magnetization alongn. We can show that it is an invariant{H, h} = 0. Thus,
in the continuum limit, the sum ofn · l is also a conserved quantity [18].

In order to find an expression forh, we shall again use again the Liouville theorem.
When computing i{Hx,n} with the terms in the Hamiltonian involving the links in theex
direction (that is when considering two spin chains in this direction) we then find

∂n

∂t
= cg2

2
l× n+ cg

2

8
n× (2s∂x∂yn+ ∂xΓy). (23)
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We have set herecg2 = 8Ja2. The last four terms involving theplaquette(x, y) links in
the ey direction. Thus in order to keep the same notation as previously, we now have two
spin chains wherea→ b, b→ c, c→ d, d→ a. Therefore,n→−n andDy →−Dx .
AsA(−n) = A(n), we see that under this transformation,Γx = A(−n) · ∂xn(x)n→ Γy .
ThusΓµ behaves likel. We then find in theey direction

∂ − n
∂t
= cg2

2
l×−n+ cg

2

8
(−n)× (2s∂y∂x((−n)+ ∂yΓx). (24)

Thus globally, when we take into account all links, we find

∂n

∂t
= cg2l× n+ 1

8n× (∂xΓy − ∂yΓx). (25)

In order to expressh, the residual magnetization’s component alongn, we can use the
same kind of calculation which led us to equation (21). Indeed,h corresponds to the rotation
of the frame(u, v) aroundn. In the coherent state representation, this rotation is associated
with the phase that appears in the definition of the scalar product (18). Using (19) and (20)
we find the following expression forn · l:

4a2h = 4a2〈n|l〉 = i
a2

2
(∂xτ

g
y − ∂yτ gx )

h = 1
8(∂xΓy − ∂yΓx) · n = 1

8(∂xn× ∂yn).n = 1
8J

1.

(26)

h is nothing but the density of the Pontryagin index [19]. It describes the chiral fluctuations
of the staggered magnetization [15]. When integrated over the whole plane(x, y), it is
indeed a conserved quantity with respect to the time evolution. These fluctuations are
responsible for the angular momentum’s component alongn. Therefore, using (25) and
(26), we can conclude that the full expression ofl is

l = n× ∂n

cg2∂t
− 1

8
(∂xΓy − ∂yΓx) = L+ S. (27)

The first part of this expression,L is the angular momentum density associated with the
observables degrees of freedom (the order parametern), also called the orbital part. The
second part represents the generator of rotations associated with the inner degree of freedom,
or classical spin, denotedS [20]. It corresponds to the free orientation of a plane orthogonal
to n, or local Berry’s phase.

6. Expansion of the Hamiltonian density

When considering the inner links of aplaquette, the exact expression of the Hamiltonian
density as a function of the new variables has the following form:

a · b+ a · d+ c · d+ b · c = 4(a4l2− s2n2) = 4a4

(
2l2+ s2

a2
(D2

x +D2
y)

)
− 4s2. (28)

We shall now consider the links between neighbouringplaquettes, and expand the
Hamiltonian density, keeping terms of order less than or equal toa4. We look first at
the links in theex direction, that is for two spin chains in this direction.

1

2s2
[(1 · a+ d · 6)+ (5c+ b · 2)] = 2a4

s2
l2−n · [n(x − 2a, y)+ n(x + 2a, y)]

+aDx · (n(x − 2a, y)− n(x + 2a, y))+ an · (Dx(x + 2a, y)

−Dx(x − 2a, y))+ a2Dx · [Dx(x + 2a, y)+Dx(x − 2a, y)]
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−a2Dy · [Dy(x + 2a, y)+Dy(x − 2a, y)] + a
3

s
l · (Dy(x − 2a, y)

−Dy(x + 2a, y))+ a
3

s
Dy · (l(x + 2a, y)− l(x − 2a, y))

= 4a4

s2
l2+ 4a2(∂xn)

2− 8a2Dx · ∂xn+ 4a2(Dx)
2+ 8

a4

s
l · ∂xDy.

We note that the terms which could, at the end of the expansion, contribute to the
Pontryagin index(a3l · ∂n), cancel each other exactly. This result stems from the fact that
the Pontryagin index is a topological invariant in dimensionD = 2 (or 1+ 1). It is no
longer relevant in dimension 2+ 1.

This can be explained globally by noting that two neighbouring one-dimensional chains,
of axis ey , and with indices ‘i’ and ‘i + 1’, will have, in a one-dimensional treatment,
homotopy indices equal in absolute value (because the Pontryagin index, when considered
as a function ofxi , is continuous and has integer value).

Owing to the local Ńeel ordering, the order parametersni+1 are opposite to their vis-
à-vis, ni . As a consequence, the homotopy indices will have opposite signs. Therefore
globally, their summation along the axisex will not contribute to the total action [8].
We have shown here that the absence of such a contribution is even true locally, when
considering only oneplaquette.

The last four terms involving theplaquette(x, y) are the four links in theey direction.
Thus in order to keep the same notation as previously, we now have two spin chains where
a→ b, b→ c, c→ d, d→ a. Therefore,n→ −n andDy → −Dx . Thus we find in
theey direction

1

2s2
[(8 · a+ b · 3)+ (4 · c+ 7 · d)] = 4a4

s2
l2+ 4a2(∂yn)

2

−8a2Dy · ∂yn+ 4a2(Dy)
2− 8

a4

s
l · ∂yDx.

Finally, we replace the auxiliary fields 2Dµ with ∂µn+ 1
s
Γµ, and we find that, at lowest

order, the Hamiltonian density has the following form

H = 2Ja2
∑
〈i,j〉

[8a2(l+ 1
8(∂xΓy − ∂yΓx))2+ s2(∇n)2].

Thus, in the Hamiltonian formulation, only the orbital part remains. We take the continuum
limit in the above expression forH , that is 4a2∑

〈i,j〉 −→
∫∫

dx dy, and replacel calculated
from the Liouville theorem. The Hamiltonian for the low-energy excitations in a two-
dimensional Heisenberg antiferromagnet is the nonlinearσ model:

H = c

2

∫ ∫
dx dy [g−2(∇n)2+ 1

(cg)2
(∂tn)] (29)

wherec = 2
√

2Jas and g2 = 2
√

2a
s

which are the real physical observables. They now
correspond to the values found using the renormalization group techniques [21].

7. Conjugate momenta

Now, we shall compute the term∂xΓy − ∂yΓx , which is associated with the classical spin
S of the order parameter. We shall use the space-curve formalism, where the derivatives
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of the fieldn are expressed through the Darboux-Ribaucour equations [3, 16]:

∂in = κigu+ κinv
∂iu = −κign+ τ igv
∂iv = −κinn− τ igu

where(u,v) span the plane perpendicular ton. Thus we can write:

S = ∂xΓy − ∂yΓx = ∂x(τyn)− ∂y(τxn)
= (∂xτy − ∂yτx)n+ (τ xg κyg − τ yg κxg )u+ (τ xg κyn − τ yg κxn )v. (30)

The extrinsic curvatures can be expressed as functions of the Euler angles:

κig = sinθ sinψ∂iϕ + ∂iθ cosψ and κin = sinθ cosψ∂iϕ − ∂iθ sinψ. (31)

Together with (17), we can then write [22]

S = εij sinθ∂iϕ∂jψv
′ + εij ∂iψ∂j θu′ + εij sinθ∂iθ∂jϕn+ εij cosθ∂iϕ∂j θu

′ (32)

where u′ = cosψu − sinψv = n × ∂n
sinθ∂ϕ and v′ = sinψu + cosψv = n × ∂n

∂θ
.

The εij cosθ∂iϕ∂j θ term does not have the same symmetry as the Pontryagin index,
J 1(θ, ϕ) = εij sinθ∂iϕ∂jψ . Indeed, when considering configurations with fixed boundary
conditions, that is whenθ → [0, π ], ϕ → [0, 2π ] and ψ → [0, 2π ], its contribution
vanishes. If we make the changeθ → π − θ , ϕ → ϕ andψ → ψ in order to map the
southern hemisphere on the northern hemisphere, then:∫

dx dy εij cosθ∂iϕ∂j θ =
∫ 2π

0

∫ π

0
cotanθJ 1(θ, ϕ)dθ dϕ

=
∫ 2π

0

∫ π
2

0
cotanθJ 1 dθ dϕ +

∫ 2π

0

∫ π

π
2

cotanθJ 1 dθ dϕ = 0

becausef (θ) = cotanθ andJ 1(θ, ϕ) are odd forθ → π − θ . For the orbital part, we have:

n× ∂n
∂t
= ∂tθn× ∂n

∂θ
+ sinθ∂tϕn× ∂n

sinθ∂ϕ
= sinθ∂tϕu

′ + ∂tθv′

and then, when we project the relation (27) onu′ andv′, we conclude that

5θ = ∂tθ − α

8π
εij sinθ∂iϕ∂jψ

5ϕ = sinθ∂tϕ − α

8π
εij ∂iψ∂j θ

where the topological angleα is equal toα = π . Therefore, in the continuum limit, the
Heisenberg Hamiltonian in dimensionD = 2+ 1 has the following form

H = c

2

∫ ∫
dx dy

[
g−2(∇n)2+ g2

(
5θ − sinθ

α

8π
εij ∂iϕ∂jψ

)2

+ g2

sin2 θ

(
5ϕ − sinθ

α

8π
εij ∂iθ∂jψ

)2
]

(33)

wherec = 2
√

2Jas is the velocity of the magnons in two dimensions andg2 = 2
√

2a
s

the
coupling constant of the nonlinearσ model. The Lagrangian density associated with this
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Hamiltonian is the nonlinearσ model with a Hopf term:

L = 1

2g2

∫ ∫
dx dy

[
c−2

(
∂n

∂t

)
− (∇n)2

]
+ α

8π

∫ ∫
dx dy εijk sinθ∂iϕ∂j θ∂kψ

= 1

2g2

∫ ∫
dx dy

[
c−2

(
∂n

∂t

)
− (∇n)2

]
+ α

8π

∫ ∫
dx dy J ·A. (34)

α = π is the topological angle associated with the statistic of the excitations.J k = εijkεabc
na∂in

b∂jn
c is the topological current constructed from the vector fieldn andA is the gauge

fields from which it derives: rotA = J .

8. Conclusion

In order to find the correct values of the physical observablesc, the celerity of the magnons,
andg2, the strength of the coupling, it is crucial to take into account the role of the auxiliary
fields in the expansion of the Hamiltonian density.

These fields assure the conservation of the number of degrees of freedom, when taking
the continuum limit à la Affleck. They allow us to naturally introduce a gauge field,
which for certain configurations ofn, cannot be gauged out. Moreover, in contrast to the
D = 1+ 1 case, the angular momentum associated with the continuum order parameter
of the Heisenberg model in dimensionD = 2+ 1 is no longer perpendicular to the order
parameter of the nonlinearσ model. Indeed it possesses a classical spin part. Owing to the
fact that the true order parameter inD = 2+ 1 is now a full trihedra.

As a consequence, we have shown that this gauge field is responsible for the presence
of a Hopf term in the Lagrangian action which could modify the statistics of the excitations,
as suggested initially by Dzyaloshinskiiet al.
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